
Towards Efficient Risk-identification in Risk-Driven
Development Processes

Andreas Demuth
Institute for Software Systems

Engineering
Johannes Kepler University

Linz, Austria
andreas.demuth@jku.at

Markus
Riedl-Ehrenleitner

Institute for Software Systems
Engineering

Johannes Kepler University
Linz, Austria

markus.riedl-
ehrenleitner@jku.at

Roland Kretschmer
Institute for Software Systems

Engineering
Johannes Kepler University

Linz, Austria
roland.kretschmer@jku.at

Alexander Egyed
Institute for Software Systems

Engineering
Johannes Kepler University

Linz, Austria
alexander.egyed@jku.at

ABSTRACT
Today’s software projects face an environment of continuous
change and evolution. In order to handle evolution in de-
velopment environments (e.g., requirements, technology) ef-
fectively, over the last decades well-established development
processes have been adapted significantly and new process
models have been proposed. For example, there is a wide
range of agile processes which are risk-driven and which not
only handle but embrace frequent change. However, agile
and risk-driven processes still suffer from a lack of support
for automatic and generic identification of certain risks.

In this paper, we present an approach for automatic, fine-
grained identification of high-risk development artifacts and
high-risk-areas within those artifacts that is easy to integrate
with common development processes.

The approach has been implemented in a proof-of-concept
prototype. First validation results indicate that the ap-
proach is highly scalable and provides continuous feedback
about a development project’s technical risks.

Keywords
Process support, project management, traceability, consis-
tency checking, change propagation

1. INTRODUCTION
In today’s software projects, project managers have to face

several challenges simultaneously. First, the complexity of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSSP’16, May 14-15, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4188-2/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2904354.2904364

software systems increases steadily [1]. While in the past
it was common to develop standalone software systems, to-
day’s development projects typically deal with systems that
are integrated with existing infrastructures and that interact
with numerous other systems. Thus, development projects
nowadays require sophisticated management and documen-
tation techniques in order to handle this high level of com-
plexity. Second, the frequency in which new products or
technologies hit their target markets is also increasing [1].
Producers of IT-systems or services update products at an
impressive pace and drive technological progress forward by
frequently revealing new technologies. This means that dur-
ing the development of a new system, the system’s expected
environment of operation is changing (e.g., used technologies
change, or the interfaces of external systems evolve). For ex-
ample, new technologies may become available that provide
faster or more reliable information the system under devel-
opment needs for operation. In this case, the system under
development must be adapted quickly to the new third-party
technology. Moreover, frequent evolution and revolution of
technology has also changed customers’ expectations. While
it was common practice in the past to define system require-
ments once at the start of a project, customers nowadays
change opinions more frequently and expect that significant
changes to the system under development’s specification can
still be made later on [1].

Flexible, agile, and risk-driven processes such as the Spiral
Model [2], Extreme Programming [3], or Scrum [4] have been
proposed to address frequent evolution and reduce project
risks [5]. Indeed, these processes suggest tasks that focus on
determining, evaluating, and minimizing project risks fre-
quently and keeping a close relation to stakeholders in order
to get informed about any change request as soon as possi-
ble.

Typically, there is a distinction between organizational
risks and technical risks [6]. While for organizational risks
there are typically mitigation strategies available that can
be applied by the project management (e.g., enforce docu-

mentation to avoid loss of knowledge if an employee quits
unexpectedly), the identification and evaluation of technical
risks is quite difficult [6, 7]. Even though risk-driven pro-
cesses suggest tasks and best-practices that allow project
managers to quickly discover arising needs for changes (e.g.,
through regular stakeholder meetings or continuous evalua-
tion of alternatives) [5], these processes typically do not pro-
vide means for automatic determination of high-risk-areas
in development artifacts (i.e., areas in development artifacts
whose change may require a significant amount of follow-up
changes to be performed) [7]. An example for such a high-
risk-area in a development project would be a single method
in source code that is called from various places across the
system to implement numerous use cases. If this method
was changed, it would potentially cause a large number of
use-cases to be no longer implemented correctly and thus
require many adaptations in the source code. Moreover, it
is typically necessary to determine manually which develop-
ment artifacts, and in particular which areas within those
artifacts (e.g., which requirements or which pieces of source
code), impose the highest risks for a project. Unfortunately,
this is not only time consuming but also error prone, as it
requires extensive knowledge of not only a single but all of
a project’s development artifacts [8]. Thus, it is quite likely
that in today’s highly complex projects, areas of high risk
remain undetected.

In this paper, we present an approach that addresses these
issues by providing fully automatic determination of high-
risk-areas in projects’ development artifacts. The approach
relies on the DesignSpace [9] as a platform for development
artifact and process integration. Specifically, incrementally
built trace information within and between development ar-
tifacts is used to determine areas in individual development
artifacts that impose significant project risks. In contrast
to other approaches, the fine-grained integration of devel-
opment artifacts in the DesignSpace allows for relations be-
tween different development artifacts to be also considered
for finding high-risk-areas.

The approach has been implemented in a software proto-
type. Empirical validation results indicate that the proposed
approach scales and provides continuous feedback about high-
risk-areas in development artifacts.

2. EXAMPLE AND MOTIVATION
To illustrate the need for fine-grained development arti-

fact integration and automatic detection of high-risk-areas,
we introduce a small example from the mechatronics do-
main. In this example, a software-controlled robot arm is
developed that can move objects from one point to another.
A CAD drawing of the robot arm as well as an illustra-
tion showing its movement angles and important variables
for calculations is depicted in Fig. 1(a). The project’s de-
velopment artifacts are depicted in Fig. 1(b). Specifically,
these are (from left to right): spreadsheets for calculations,
electric models for simulations, and source code for control-
ling the robot arm. These development artifacts depend on
each other. For example, the control software uses infor-
mation provided in the calculation spreadsheet and in the
electric model. The electric model uses information from
the calculation spreadsheet and also from the controller soft-
ware. Finally, the calculation spreadsheets uses some infor-
mation from the electric model. We assume that the de-
velopment project follows an incremental process (e.g., the

(a)

Calculations Electric Model Control Software

(b)

Figure 1: Illustration of robot arm (a) and its de-
velopment artifacts (b).

Spiral Model [2]) in which a new process iteration is about
to start. At this point, risks should be identified, evaluated,
and the highest risks should then be addressed during the
iteration.

Unfortunately, there is little to no guidance on how to find
and evaluate technical risks in development projects in an
objective manner, and thus processes typically rely on esti-
mations by experts [10]. To obtain an overview of poten-
tial technical risks, representatives of the teams responsible
for the different artifacts are asked to identify the technical
risks associated with their respective development artifacts.
For that purpose, these representatives also have to identify
high-risk-areas within the development artifacts (i.e., those
parts of the artifacts that are the most crucial). Then, all
stakeholders of the project have to rank those risks and they
have to find an agreement about which risks to address in
the next process iteration. Indeed, this task is quite complex
as it requires a deep understanding of how the individual
development artifacts are related and how important each
individual development artifact is for overall project suc-
cess [8, 10]. While representatives of the individual teams
may or may not have a solid understanding of the high-
risk-areas within their respective development artifact (e.g.,
which part of the source code is most critical), they typi-
cally cannot properly estimate the importance of the devel-
opment artifact for the project due to a lack of knowledge
of other domains. Thus, the ranking of risks is often done
in an ad-hoc manner and it is typically based on vague es-
timations and guesses made by project managers. Indeed,
there are metrics defined for certain types of development
artifacts that help stakeholders to estimate their complexity
(and thus their general technical risk), such as lines of code
or feature counts. Unfortunately, such metrics do exist only
for certain domains and certain types of development arti-
facts (e.g., software artifacts [6]). There is clearly a lack of

guidance that is based on objective measures and that can
be provided for arbitrary development artifacts.

In our example, the next process iteration may focus on
the robot’s control software because the software team’s rep-
resentative believes that there are still some major chal-
lenges to be tackled, whereas those responsible for the cal-
culations and electric model artifacts are confident that their
respective development artifacts do not impose serious project
risks. In the next sections, we will present a novel approach
that provides objective guidance for indentifying risks of ar-
bitrary development artifacts.

3. DESIGNSPACE
Before we discuss in detail how our proposed approach

detects high-risk development artifacts and high-risk-areas
within individual development artifacts automatically and
efficiently, and how it provides guidance for change propa-
gation after system adaptations, we present in this section
the core concepts of the DesignSpace [9], the development ar-
tifact integration and knowledge management platform the
approach relies on.

The DesignSpace is a knowledge sharing and development
artifact platform. Its key principle is that any knowledge
that is used during a development project is stored centrally
in a data cloud, using a uniform representation of knowledge.
Indeed, stakeholders of a development project are used to
certain tools for handling development artifact generation
and editing. For instance, managers often use spreadsheets
for calculations and word processing tools for documenting
system requirements (e.g., Microsoft Office). Engineers, on
the other hand, typically use sophisticated tools for perform-
ing complex modeling and simulation tasks (e.g., ProEngi-
neer for CAD drawings); and software developers are com-
monly using integrated development environments (IDEs) to
write source code (e.g., Eclipse IDE). Since stakeholders typ-
ically use tools that are mature and efficient for performing
certain tasks, the DesignSpace does not replace these tools,
but it allows all stakeholders to continue working with their
favorite tools and it mirrors continuously the knowledge
available in stakeholders’ tools. This is done by translat-
ing development artifacts (e.g., spreadsheets or source code)
to the DesignSpace’s uniform representation of knowledge—
at a fine level of granularity. For example, each individual
cell of a spreadsheet is represented by a separate entry in
the DesignSpace. Similarly, source code is represented as its
corresponding abstract syntax tree; there is one entry in the
DesignSpace per syntax tree node. The mirroring may be
based on files or it may be done by tool adapters that directly
synchronize development artifacts with the DesignSpace as
they are edited by stakeholders in tools. Whichever method
is used, the DesignSpace continuously synchronizes its mir-
rored information with development artifacts as they evolve.

By mirroring all development artifacts at a fine level of
granularity and by using a uniform representation of knowl-
edge, the DesignSpace allows for further services such as
inter- and intra-artifact linking of knowledge and consistency
checking. For our running example, Fig. 2 depicts how the
development artifacts are represented uniformly in the De-
signSpace. Note that for each individual development arti-
fact (i.e., control software, calculations, and electric model)
there are numerous elements due to the fine-grained integra-
tion approach the DesignSpace uses (for now, please ignore
the color-coding of development artifacts and individual el-

0/0 1/0 1/0

0/0 1/1 2/0

Control Software (1)
Electric Model (4)

Excel Calculations (7)

1/1 1/1 0/1

1/1 0/25/1

0/3 1/0

1/0 1/0

1/1 6/0

Focus of unguided
stakeholders

Intra-artifact HRA

Inter-artifact HRA

1/2

Intra-artifact usage

Inter-artifact usage

Figure 2: DesignSpace representation of robot arm
development artifacts.

ements as well as the numbers assigned elements). For in-
stance, there is a single element for each cell of the calcula-
tion spreadsheet. Similarly, the electric model is represented
using multiple elements, each representing an atomic piece
of knowledge from the electric model (e.g., individual vari-
ables). The same is true for the control software, where
there is a single element for each node of its corresponding
abstract syntax tree.

Moreover, there are connections between the elements of
the individual artifacts (drawn as black arrows) as well as
connections between elements of different artifacts (drawn
as red arrows). A connection between two elements means
that the source element is somehow relying on the target el-
ement (e.g., calling a method, or reusing a calculated value).
Although a specific meaning may be attached to any con-
nection in the DesignSpace, for our purposes the sheer ex-
istence of a connection is sufficient for detecting high-risk
development artifacts and high-risk-areas, thus we omit a
more detailed discussion here. In the DesignSpace, connec-
tions between elements are created incrementally as devel-
opment artifacts (and their individual elements) are edited.
During artifact editing, stakeholders are expected to docu-
ment whenever they reuse knowledge from other artifacts by
establishing an inter-artifact connection (i.e., red arrow in
Fig.2) between the edited element and the element that rep-
resents the reused knowledge. Thus, there is no significant
overhead during development editing and the documenta-
tion of knowledge reuse. Intra-artifact connection (i.e., black
arrows in Fig. 2 are created automatically when individual
development artifacts are mirrored to the DesignSpace.

In the next section, we will discuss how the DesignSpace’s
services are employed to perform efficient and automatic
detection of high-risk development artifacts and high-risk-
areas within individual artifacts.

4. AUTOMATIC RISK-IDENTIFICATION
With all development artifacts integrated in the DesignSpace

and the knowledge being linked, those development artifacts
that impose the highest risks in a development project can
be identified automatically. Moreover, it is possible to iden-
tify within each development artifact where the highest risks
are located, regardless of its kind (e.g., source code, CAD
drawing, spreadsheet).

4.1 High-Risk Development Artifact Identifi-
cation

Intuitively, in a development project, the risk that an indi-
vidual artifact imposes on project success increases with the
amount of knowledge that it contains and that is also used
by other artifacts. Indeed, adapting an artifact on which nu-
merous other artifacts rely may require a potentially large
number of co-adaptations to be necessary. Thus, it is crucial
that such artifacts reach a stable state as early as possible.

We developed a new service for the DesignSpace that au-
tomatically tracks the usage of individual artifacts and that
continuously provides information about which artifacts are
most crucial in the project. For each individual element
within a given development artifact, our service continu-
ously tracks how strongly it is used by (elements of) other
artifacts. This is done by counting the number of the ele-
ment’s incoming inter-artifact connections. The number of
inter-artifact connections for each artifact is depicted as the
second number of the elements’ labels in Fig. 2 (e.g., 0/3

means that the element has three incoming inter-artifact
connections).

As discussed above, when using the DesignSpace, connec-
tions between elements of different development artifacts are
created and managed incrementally whenever a development
artifact is edited and knowledge from another development
artifact is used. Therefore, the count of incoming inter-
artifact connections can be updated efficiently during de-
velopment. Whenever an inter-artifact connection is estab-
lished, its target element’s count of incoming inter-artifact
connections is increased; whenever a connection is removed,
its target element’s count of incoming inter-artifact connec-
tions is decreased. These operations are atomic and do not
impose a significant overhead.

The total risk of a development artifact is defined as its
total usage by other development artifacts (i.e., the sum of
incoming inter-artifact connections for all of its elements).
In Fig. 2, each development artifact’s total risk is written
in parenthesis after its name (e.g., the Excel calculations
artifact has a total risk of 7). Note that this total risk is
calculated without requiring individual (or groups of) stake-
holders to be aware of the role of a development artifact in
the system under development. For each development arti-
fact, those elements that are connected most often to other
elements are also highlighted with red background in Fig. 2.

Our service continuously provides information about which
development artifacts (and which of their elements in partic-
ular) are used most often by others. Stakeholders, especially
project managers, are thus provided with objective infor-
mation about each individual development artifact’s impor-
tance for the project, without having to rely on experts’
subjective opinions.

Coming back to our running example, in Section 2 we as-
sumed that stakeholders identified the control software to
be a high-risk artifact based on the subjective opinion of
the software team’s representative (as indicated by its grey
background in Fig. 2). However, our service reveals that the
control software is hardly used by other development arti-
facts but that both the Excel calculations and the electric
model artifacts impose potentially higher risks. Therefore,
the stakeholders may want to revise their decision and fo-
cus on stabilizing the calculations rather than optimizing
the control software during the next iteration. Note, how-
ever, that our service provides objective information and

thus guidance, but it does not prescribe any automation for
further development—stakeholders are free to ignore the in-
formation.

4.2 High-Risk-Area Identification
While the identification of high-risk development artifacts

is important to determine on which artifacts to focus during
an iteration, usually all development artifacts are evolved
continuously. Therefore, it is also necessary in risk-driven
development processes to determine which parts within a
given development artifact impose the highest risk, even for
development artifacts that are of generally low risk.

The identification of such high-risk-areas within devel-
opment artifacts is done similarly to the identification of
high-risk development artifacts. Intuitively, the more of-
ten a given element in a development artifact is used by
other elements (of that artifact), the more crucial it is that
this element becomes stable and thus a reliable source of
knowledge for reuse. Our service tracks for each element
in the DesignSpace the number of incoming intra-artifact
connections. This count is depicted as the first number of
the elements’ labels in Fig. 2 (e.g., 5/1 means that the el-
ement has five incoming intra-artifact connections). Note
that these connections are managed automatically and in-
crementally by the DesignSpace when development artifacts
are edited. Thus, the counter for each individual element
can be updated efficiently whenever connections are created
or deleted without imposing significant overheads. Also note
that this detection of high-risk-areas supports any kind of
development artifact. While there are approaches that de-
tect critical areas for some kinds of artifacts (e.g., source
code profilers detect method usage), for a wide range of ar-
tifacts there are no approaches available. For instance, our
approach detects cells in Excel spreadsheets that are used
frequently to calculate other cells’ values.

For our running example, in Fig. 2 the most crucial ele-
ment of each artifact is highlighted with blue background.
Again, note that our approach provides objective informa-
tion about how often the knowledge represented by indi-
vidual elements is reused by others. Stakeholders, on the
other hand, cannot provide reliable information about intra-
artifact reuse of knowledge as in today’s development projects
artifacts are typically edited by multiple stakeholders and
individuals are not aware of how knowledge is reused (e.g.,
one engineer defines a variable to be used in a diagram, and
another engineer uses the variable in a simulation). There-
fore, our approach provides valuable and objective guidance
about which parts of a development artifact to focus on.

Indeed, the elements of highest risk are high-risk areas
of atomic size (i.e., consisting of a single element). At the
same time, they can be seen as the center element of a larger
high-risk area that contains not only the high-risk element,
but also those elements directly (or transitively) connected
to it. Such larger high-risk areas can be computed easily
using traditional search algorithms (e.g., [11,12]).

4.3 Process Integration
Once high-risk elements and areas have been identified,

this information can be used to further guide the develop-
ment process. For upcoming process iterations, for instance,
project managers want to focus the planned effort on high-
risk areas in order to eliminate the associated risks as early
in the process as possible. Note that there are numerous

ways of presenting such information and that visualization
is beyond the scope of this work. However, our approach
provides information detailed enough the visualize high-risk
areas effectively.

5. PRELIMINARY VALIDATION
To validate our approach, we demonstrated its technical

feasibility and performed first scalability tests.
Technical Feasibility: To demonstrate the technical fea-
sibility of our approach, we have implemented it as a pro-
totype service for the DesignSpace integration framework.1

The service continuously tracks the number of incoming
inter- and intra-artifact connections for individual elements
and provides a sophisticated API for obtaining information
about high-risk artifacts and high-risk-areas programmati-
cally.
Scalability: To assess the scalability of the developed pro-
totype service, we performed scalability tests in which vari-
ous development artifacts were mirrored to the DesignSpace
and connections between individual elements were changed.
We observed that the processing time for updating the risk-
information of individual elements remained constant for dif-
ferent sizes and kinds of development artifacts, regardless of
whether inter- or intra-artifact connections were changed.
Typically, risk-information was updated within milliseconds
after a connection change was performed.

6. RELATED WORK
Risk-identification in development project is an active field

of research. Next, we discuss some approaches that are close
to ours. Antinyan et al. [6] proposed an approach for risk
prediction in software development projects that uses soft-
ware metrics to determine the risks of individual parts of
a system. Instead of defining a risk using discrete values
for its probability and impact, they use metrics to come
up with a continuous measure. However, their approach
handles only software artifacts and does not support arbi-
trary development artifacts in general. With our proposed
approach, technical risks are detected in any development
artifact. Letier et al. [7] state that high level of uncertainty
in early phases of software engineering projects is a severe
issue. They argue that it is important to correctly esti-
mate the value of information before deciding whether or
not efforts should be made to increase system understand-
ing before making decisions. Ohlsson et al. [13] also state
that the early detection of high-risk development artifacts
is crucial in today’s software projects. When using the De-
signSpace for development artifact integration, our service
provides additional information at basically no cost and thus
automatically reduces the level of uncertainty. Moreover,
our approach can be applied as soon as development arti-
facts are defined. Feedback about high-risk-areas and high-
risk artifacts is provided continuously and reflects ongoing
system evolution. Thus, it provides valueable guidance for
decision making at all stages of a development project.

7. CONCLUSIONS AND FUTURE WORK
In this short paper, we have outlined a novel approach

for automatically and efficiently detecting high-risk develop-
ment artifacts in development projects and high-risk-areas
1DesignSpace framework and prototype service of approach
available at: isse.jku.at/tools/dsspc/xadr.zip (pw: dsisse)

within those artifacts. The proposed approach relies on
fine-grained development artifact integration through the
DesignSpace integration framework and provides continu-
ous information about knowledge reuse. The approach has
been implemented and first evaluation results suggest that
it is highly scalable. For future work, we plan on comparing
the quality of guidance provided by our approach with that
given by actual stakeholders that identify risks manually.

Acknowledgments
The research was funded by the Austrian Science Fund
(FWF): P25513-N15 and P25289-N15, and the Austrian
Center of Competence in Mechatronics (ACCM): C210101.

8. REFERENCES
[1] B. Boehm, S. Koolmanojwong, J. A. Lane, and

R. Turner, “Principles for successful systems
engineering,” Procedia Computer Science, vol. 8, pp.
297–302, 2012.

[2] B. W. Boehm, “A spiral model of software
development and enhancement,” IEEE Computer,
vol. 21, no. 5, pp. 61–72, 1988.

[3] K. Beck, “Extreme programming: A humanistic
discipline of software development,” in FASE, 1998,
pp. 1–6.

[4] L. Rising and N. S. Janoff, “The scrum software
development process for small teams,” IEEE Software,
vol. 17, no. 4, pp. 26–32, 2000.

[5] S. V. Shrivastava and U. Rathod, “Categorization of
risk factors for distributed agile projects,” Information
& Software Technology, vol. 58, pp. 373–387, 2015.

[6] V. Antinyan, M. Staron, W. Meding, A. Henriksson,
J. Hansson, and A. Sandberg, “Defining technical risks
in software development,” in IWSM Mensura, 2014,
pp. 66–71.

[7] E. Letier, D. Stefan, and E. T. Barr, “Uncertainty,
risk, and information value in software requirements
and architecture,” in ICSE, 2014, pp. 883–894.

[8] V. Antinyan, M. Staron, W. Meding, P. Österström,
E. Wikstrom, J. Wranker, A. Henriksson, and
J. Hansson, “Identifying risky areas of software code in
agile/lean software development: An industrial
experience report,” in CSMR-WCRE, 2014, pp.
154–163.

[9] A. Demuth, M. Riedl-Ehrenleitner, A. Nöhrer,
P. Hehenberger, K. Zeman, and A. Egyed,
“DesignSpace – An Infrastructure for
Multi-User/Multi-Tool Engineering,” in SAC, 2015.

[10] X. Wu, X. Li, R. Feng, G. Xu, J. Hu, and Z. Feng,
“OOPN-SRAM: A novel method for software risk
assessment,” in ICECCS, 2014, pp. 150–153.

[11] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal
basis for the heuristic determination of minimum cost
paths,” IEEE Trans. on Systems Science and
Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[12] R. Tarjan, “Depth-first search and linear graph
algorithms,” SIAM journal on computing, vol. 1, no. 2,
pp. 146–160, 1972.

[13] N. Ohlsson, A. C. Eriksson, and M. E. Helander,
“Early risk-management by identification of
fault-prone modules,” Empirical Software Engineering,
vol. 2, no. 2, pp. 166–173, 1997.

